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Abstract

The present document summarizes some recent (June — Sept2d@®) extensions of a model for predicting
transitional and fully turbulent pressure fluctuation lioadusing CFD mean flow information, proposed by L. J. De
Chant in [4, 5]. The purpose of this work is to fine tune the ¢igna at the heart of the model, and to formulate the
most appropriate numerical method for their solution. Sehwtcomings of the eigenvalue problem (EVP) proposed
earlier [4, 5] are identified and addressed. Previously em&®nnections to Sturm-Liouville and Orr-Sommerfeld
theory are made. Several new eigenvalue and boundary vediems for the fluctuating quantities are proposed
and evaluated in light of well-posedness, the underlyingsfas, and numerical implementation. The details of some
suggested numerical solution methods (the series solatiethod and a Laguerre-Galerkin spectral method) are
outlined. Preliminary numerical results for two EVPs fotatad herein are presented. These results uncover some
issues that remain and may need to be addressed in the future.

DOE Funding Statement

Sandia is a multiprogram laboratory operated by Sandia @ation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Securitginitration, under Contract DE-AC04-94AL85000.

1 Introduction

Following the approach of [4, 5], we consider the 2D steadpinpressible Euler equations. Introducing the classical
Reynolds decomposition:
u=U+u, v=V+Vv, p=P+p (1)

where the capitalized quantities denote mean (temporahgeg¢quantities and the ‘prime’ quantities denote tenlpora
fluctuations, and substituting (1) into the equations, wiiob

[Ux+W] +[u+ V] =0 2
[UUx+VUy + B+ (WU )x 4 (UV)y] + [UL + VU 4 Uxld + UV + pi] =0 3)
UV +VVy + B+ (UV)x+ (VV)y] + [UV+ VY, + Ve + VWV + (] = 0 (4)



(2) is the continuity relation and (3) and (4) are theandy—momentum expressions respectively.

As in [4, 5], the next step in the so-called “equation-spplgt approach is to “split” the mean equations from the
fluctuating equations in (2)—(4). Doing so yields the follogysystems of equations:

UX +Vy = 0
Mean: ¢ UUyx+VUy+ B+ (UU)x+ (UV)y = 0 5)
{ UVx+VVy+ R+ (UV)x+ (VV)y = 0
{ w+v, = 0
Fluctuation: ¢ Uu +Vu +U +UWV +pf = 0 (6)
UV +VV +Wld +VW +p) = 0

(5) will be referred to as the “mean equations” and (6) as thestuating equations”. Note that we amet applying
the averaging operator to (6) as is typically done in Reysxdlderaged Navier-Stokes (RANS). Indeed, if we did this,
then the equations (6) would be lost (i.e., the left-hamidsivould vanish).

If we make the “standard” boundary simplifications as donf4irb], namely assumar/u’)y =~ (VV)y = (UV)x ~
VVy ~ 0, and apply the eddy-viscosity mode(u'V')y = vei tUyy, then the mean equations (5) become:

U+Vy = 0
Mean: ¢ UUyx+VUy+Pc—VertUyy = 0 (7

Note that with the boundary layer/modeling assumptionyap@) has decoupled from the fluctuating equations (6).
Thus, (7) can be solved either numerically or perhaps aigaliyt [4, 5] for the mean quantities independently of (6).

The running document [7] contains several approximateyéinadolutions to (7). One model for the mean flow
velocities is the following exponential one:

U(xy) =e (1—e ™) 8)
for some constanty, ¢y (to be specified). WithJ (x,y) given by (8), one can approximate, wher < 1:

U coboePoY Co
v"y——ﬁz—y, y<<1 9)

Uyy . bge*boy - bo

Uu 1-eby™ y°

The approximations (9) and (10) will be employed in Sectidrzsand 4.2 for the sake of obtaining some preliminary
numerical results.

y<<1 (10)

Given the equation splitting (5) and (6) our approach wiltdoeolve these equations by decoupling the mean equations
as in (7), solving for the mean quantities, substitutingrthiato (6) and solving for the fluctuations from (6). Of
course, as these equations stand, they are incompletedéguconditions are required. We will take as our domain
the following semi-infinite region:

Q = (0,) x (0,00) C R? (11)
The boundary conditions on the mean velocities are
U(x,0) =V (x,0) =V (x,00) =0, U(x,00) =1 (12)
The boundary conditions on the fluctuations are
u'(x,0) = U (x,®) =V (x,0) = V(X,) = p/(x,0) = p'(x,0) =0 (13)

In two-dimensions (2D), (6) and (13) can be written as a thidkr, scalar equation for the fluctuating streamfunction
Y/, defined by

U=gy V=-U (14)



The streamfunction BVP equivalent to (6) with boundary dbads (13) is:

{Uw;xx+vw§yy+uw;yy+vw;xy+(Uw—Vxx>w§+(ny—Uyyw; =0
(%, 0) = g (x,0) = gg(x,0) = Y (x,©) = 0

Once (15) is solved for the fluctuating streamfunctiwin one can obtain the fluctuating velocities by differentigti
this function per (14), and then solve the following pressBpisson equation for the pressure fluctuation:

(15)

P By = —2(Vx, + Usl + i\, + Uy )
p'(x0) =0 (16)
p(xo) =0

At this point, the following observation is in order: (6) Withe boundary conditions (13) (or, equivalently, the strea
function BVP (15)) is ill-posed, as it is a homogeneous stqaattial differential equation (PDE) with homogeneous
boundary conditions. In particular, if (6) with (13) (or egaiently (15)) were to be solved numerically, one would
obtain the trivial, uninteresting solutian=Vv = p’ = 0.

The aim of this document is to propose various ways of renmegihiis problem of ill-posedness of the fluctuating
equations. We propose several ways to do this:

e Given the mean flow, formulate (15) as a Sturm-Liouville eiggue problem (EVP) by assuming an ansatz
(solution form)y/' (x,y) = @(y)e™*, with a playing the role of an (unknown) eigenvalue to be solvedrfarch
like in classical Orr-Sommerfeld theory (Section 3).

e Given the mean flow, add fluctuating time scale tetrendy{ to (6) to yield aninitial boundary value problem

(IBVP)
w+v = 0
U +UU+VU 4+ Ul +UV +p = 0 (17)
Vi UV VY VU VWV +p) = 0

with some non-trivial initial conditions’(0,X,y) = uy(x,y), V(0,X,y) = V5(X,Y), P'(0,X,y) = pp(X,y) (Section
4). The IBVP (17) can be formulated as an eigenvalue problemssuming an unsteady Orr-Somerfeld-like
ansatal’'(t,x,y) = ({(y)e+9 for the streamfunction (Section 4).

¢ Introduce a mean-flow-dependent source into the homogerkmtuating equations (6) (Sections 5).

Although simplified variants of the equations can be solvegldically under some assumptions [4, 5, 7], ultimately
the fluctuations will be solved for numerically. The numatimethod to be employed depends on what equations are
ultimately selected, as different formulations of the @gpres are amenable to different solution methods. As we show
below, the steady Sturm-Liouville eigenvalue problem (pdi above) suggests a series solution approach (Section
3). A formulation involving unsteady fluctuations (point Bowe) can be expressed as an eigenvalue problem that is
amenable to solution by a Laguerre-Galerkin spectral nie{Bection 4).

As illuminated by preliminary numerical experiments ($a&ts$ 3.2 and 4.2), an important question that needs to be
addressed, once a set of equations is selected and solmégcisely how to interpret and validate the solutions to
these equations. Some issues that arise include in paurticul

e The possibility of complex solutions (eigenvalues and eigactions), and what these solutions would mean
physically.

e Whether it is appropriate to associate the fluctuating gtiesithat solve (6) with root-mean-square (rms) quan-
tities.

e Whethelinear equations for the fluctuations like (6) accurately desdtileephysics, turbulence being an inher-
ently nonlinear phenomenon.

In what is to come, we present several well-posed variantiseofsplit” equations for the fluctuating quantities. For
simplicity, and without loss of generality, in Sections 3ah we focus on the streamfunction equation (15). The
streamfunction approadhlimited to two-dimensions (2D); however we emphasize thahtethods presented herein



are not limited to 2D and the scalar BVP (15), i.e., they cah s easily be applied to the equations in the primitive
variables (6), or the three-dimensional (3D) version osthequations. Care is taken to formulate the equations
such that they are well-posed and amenable to numericdl@oly an easy-to-implement and appropriate numerical
method. The details of some of these implementations adeol#, and some preliminary numerical results for two
of the proposed eigenvalue problems (EVPs) are given aathirgted. We conclude with a discussion of some issues
that remain and may need to be addressed in the future.

2 The “0Old” Eigenvalue Problem (EVP) [4, 5] and the Sturm-Liouville Con-
nection

The basic idea behind the approach taken in subsequerdrse(8ections 3-4) rests on the observation that (15) is ill-
posed with the prescribed boundary conditionsitess it is viewed as an eigenvalue problem (EVP), like in standard
Sturm-Liouville theory. Recall that, in general, the Stultiouville problem is given by:

—[POIU' (X)) + a(u(x) = Aw(x)u(x) (18)

whereu(x) is the unknown function (solutionp(x), q(x) andw(x) are prescribed, and is an (unknown scalar)
eigenvalue. The solutions to (18) define various familiesrtfiogonal polynomials, orthogonal in thé(Q) inner
product with respect to the weigh{x). For example, whep(x) = 1, g(x) = 0, w(x) = 1, the solutions to (18) define
the Fourier basis; whep(x) = 1 — x?, q(x) = 0, w(x) = 1, the solutions to (18) define the Legendre basis, etc.

Motivated by this Sturm-Liouville/eigenvalue problem c@gttion, an attempt was made in [4, 5] to formulate (15) as
an eigenvalue problem resembling (18). Denoting V /U, dividing though byJ and assuminly = Viy = 0, (15)
becomes:
{www%ﬁwww%ﬁ%%—%w—-o (19
‘-IJ>/<(X’ 0) = w>/((xa oo) = LIJ)//(X’ 0) = ll’;//(xv‘”) 0

In order to make (19) resemble (18) and ensure well-possdifékis BVP, an ad-hoc eigenvallewas introduced,
based on scaling arguments. This was done by replacing

{Trug- it eyl ) (20)

whereU” (x,y) is a function describing the behavior of the mean velocigdggnts, to be specified (modeled), anis
an unknown eigenvalue parameter, to be solved for in sof@ay Making the substitution (20) in (19), the following
EVP was obtained in [4, 5]:

{ Yoo+ EWyy + W+ EWy + AU (X Y)W+ g5] = O (21)
Y(%,0) = ty(x,0) = Y(x.0) = Y(x,@) = 0

We emphasize that the eigenvallien (21) is added as an additional unknown degree of freedoensure well-
posedness of (19).

Recent work has revealed that the “ad hoc” EVP (21) has soorécsimings. While the EVP itself is mathematically
well-defined in the sense that it permits a non-trivial solutsince thesigenvalue A in (21) was introduced in an ad
hoc, artificial fashion (20), it is unclear what this eigelosand its corresponding eigenfunctions mean. In pasicul

it is unclear what to make of complex eigenfunctions andreigkies. Numerical implementation using a Hermite
cubic finite element discretization (similar to the appitoactliined in [3]) revealed that the eigenvalues and their
corresponding eigenfunctiomgere in general complex, and indeed, as the operator governihgig2asymmetric,
real-valued solutions to (21) cannot be guaranteed.



3 Steady Eigenvalue Problem (EVP) for the Fluctuations witfOrr-Sommerfeld-
Like Antatz

Given the difficulty in interpreting the solutions to the ddleigenvalue problem (21), we seek a more natural EVP, in
which the meaning of the eigenvalues and eigenfunctionsiare clearly defined and tied to the equation and/or the
physics in some way. To do so, it is useful to make a connetvi@rr-Sommerfeld theory.

Recall that, for the well-known Orr-Sommerfeld equatioad¢ton 5.2 of [12]), one obtains an eigenvalue problem by
assuming an ansatz of the form _
u(t,xy) = 0a(y)e*x
Vitxy) = Uyer (22)
Ptxy) = Py
and substituting (22) into (in the simplest case) the umist&d Euler equations. Doing so yields the well-known
Orr-Sommerfeld EVP:
A az) V=0
V(0) = V(o) =0
The three unknown parameters in (23) a(ghe primal unknown), and € C andc € C (a sequence of eigenvalues).
These eigenvalues andc are related to stability: from (22), one can see that the sigtheir imaginary parts
determines whether the solution grows temporally and/atially. Once the unknowns in (23) are computed, the

final solution can be obtained by substituting these funstiand eigenvalues into (22). Hence, the eigenvalues and
eigenfunctions have a straight forward connection to thatisms of the original equations.

(23)

One may apply the Orr-Sommerfeld ansatz approach outlihedeato derive an eigenvalue problem (EVP) for the
fluctuating streamfunction. Begin by assuming the streactfan has the following functional form:

P'(xy) = dly)e™ (24)

Here,a € C is a scalar that can be thought of as a wave number of the liistoe. Substituting the ansatz (24) into
(19), gives

e+ o+ (ea?+ ) ¢/ +a (0 -G = 0
$(0) = d() = PO = P'w) = 0

wheree =V /U. The mearx—velocity and its gradients, namely, Uy, andU,y that appear in (25) are to be fed in
from the code that solves the (decoupled) mean equationsr(Bjodeled, as in, e.g., (9)—(10).

(25)

The “natural” EVP (25) and “artificial” EVP (21) are differgras expected. Rather than introducing an ad hoc scaling
parameter to represent the eigenvalue, we have employe8dbrmerfeld analysis, with the parameteiin (24)
representing the eigenvalue. Once the solutions to (2B6)difenvalues and corresponding eigenfunctiod$ are
obtained, the final solution is given by (24).

Note that (25) is nonlinear in the eigenvalae As we will show below in Sections 3.1-3.2, one may derivergéese
solution to (25) that can be implemented easily, e.g., in MAB. A “direct” numerical solution of (25) by a standard
discretization (e.g., using a spectral method; see Sedtibnwould require the application of Newton’s method to
handle the non-linearities. It is interesting to obsena timder the assumption thats 0 andU = U (y) only, (25)
simplifies to:

LZIH—L:J—WLZ’-F(YZ@:O (26)

(26) is a linear EVP very similar to (23) that can be solved atinally (or perhaps analytically for simple enough
choices olJ) with ease using a spectral method like the Laguerre-Gialenkthod outlined in Section 4.1.



3.1 Series Solution Approach to the EVR25)

Given the connection to Sturm-Liouville exhibited abovdsinatural to try classical Sturm-Liouville solution tech
nigues to try to derive analytically solutions to (25). Otenslard technique is the series expansion partial diffeien
equation (PDE) solution technique. This is, in fact, one whgleriving the nice families of orthogonal polynomials
that solve (18), e.g., the Fourier, Legendre, Hermite, leag) etc. bases. The approach is as follows: begin by
assuming a solution of the form

gy =y amy"e ¥ (27)

m=1
Then substitute the series (27) into the EVP (25), and deriezursive relation for the coefficierds. The weight
e Y has been added to (27) so that it is possible to satisfy thegeneous boundary condition ghandv' aty = .

For the purpose of generating some actual analytical anérnoat results, assume that, fpr < 1:

0y Uy (28)
for some specified (modeled) constaggd € R (see the running document [7] and (9)—(10) above). With team
velocities given by (28), (25) becomes (multiplying thrbuay y to avoid singular coefficients):

ey + ayd/ + (ea’y—co) ¢/ + a (a’y+ho) f =0 (29)

Differentiating (27), we obtain:

@'(y)=-B % amy™e P+ i mamy™ ‘e Y (30)
m=1 m=2
@"(y) = B? § amy"e #Y - 28 i mamy™ e PV + i m(m— L)amy™ e #¥ (31)
m=1 m=2 m=3
B"(5) = —BShaamyme B+ 3257 o mary™ e B - 35T smm- a2 B

+ 3o am(m—1)(m—2)any™ e PY
Substituting (27) and (30)—(32) into (29) and re-indexing:

— Y2 B3€am_1y"+ 3o 3B%emamy™ — T, 3Be(M+ 1)magy, 1y™
+ T2 €M+ 2)(M+ L)mag Y™+ 57, Baam-1y™ = 37, 2Bamany™ (33)
+ 3 me20(M+ Dmam1y™ — 75 eBa’am 1y" + T i o ea’mamy™
+ Y me1CoBamy™ — 31 Co(M+ L)am;1y™ + Y p @%am-1y" + Y1 aboamy™ = 0
or
[(Beo+ abo)as — 2coaalye P + 57, { [~B% + B?a — Bea® + a®| am 1
+ [3B2em—2Bam+ ea’m+ Bco+ abo] am+ [—3Be(M+ 1)m+ a(m+ 1)m— co(M-+ 1) am1 (34)
+e(m+2)(M+1)may, 2} y"e #Y =0
(34) holds if each of the coefficients in the sum is zero forhemci.e., if the an, satisfy the following recursion
relations:
(Bco+ abg)ag — 2coaz = 0 (35)
[-B3e+ a3+ Ba(B—ea)]an1+ [B(3Bem—am+co) — a(B — ea)m+ abg| am (36)
+[—3Bem+ am—cg] (M+ 1)ami1+e(M+2)(M+1)mam2=0, m=2,34,...

with /' (x,y) given by (from (27) and (24))

YY) = S anye Pre (37)
m=1

INote that (27) is somewhat reminiscent of the series salugissumed for Laguerre’s differential equation, which gates the so-called
Laguerre functions; see Section 4.1 for more on the Lagsgeetral basis.



(36) is defines a matrix with four nonzero diagonals, whidtuees to a tridiagonal system when= ¢. If additional
assumptions are made to simplify (25) it may be possible tivel@ nice recursive relation for tfag, by simplifying
(36).

Note that (37), although based on the idea of an EVP with amaowmk eigenvalue, does not require solution door

B, or any eigenvalue for that matter. and3 are to be modeled (prescribed). In the implementation, anesgnply
code the solutiony/(x,y) as in (37) with theay, given by (36). The coefficiers would be specified to ensure that the
far-field homogeneous boundary conditions are satisfietiniythat

(By? _ (BY? a8

e PY=1-By+ + ...

2! 3!

one would ensure satisfaction of the far-field conditiof i set such that:

B> max (ja|m)¥™ (39)

One question that may arise is how to handle the case whexpinessions (models) fdy,/U andU,,/U are more
complicated than (28), or if they are functionsofA natural remedy here would be to freezevrite a Taylor series
for these quantities, and apply the series approach usisg fiaylor-expanded quantities for each fixed (frozen)valu
of x.

3.2 Some Numerical Results t¢25) using the Series Approach

Figures 1-2 show plots of the partial sum solutions

M
Waey) = 3 any"e e (40)
m=0

with
€=00, a=-¢ pB=1 =000, by=1 a=01 (41)
plotted forx,y € (0,50) x (0,50) with M = 50 in the partial sum (40). Note that the constnn (35) is what specifies

the magnitude of the fluctuating velocity profiles (the “natimation constant”). A question that needs to be addressed
is how to normalize the solutions, i.e., how to fix the constarspecifying the magnitude of the velocity fluctuations.

Wixy)

I Il
i

A

i

@ ¢'(xy) (b) U'(xy) ©) V(xy)

Figure 1: Fluctuating quantities (40) with (4, = 50 plotted orx,y € (0,50) x (0,50)

Convergence of the series (37) is of interest, i.e., the @mance of the coefficients,. Figure 3 is a preliminary
numerical validation that shows that for the values of tlupprties (41), thay, — 0 asm— . If the series approach is
adopted in practice, it would be worthwhile to analyze thevesgence of (40) adgl — o (the decay of the coefficients
am), analytically well as numerically.
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Figure 2:u" andv (40) with (41),M = 50 plotted ory € (0,50) along the cross-section= 0.5

0.4

0.3 1

0.2F 1

10 20 30 40 50 60

Figure 3: Decay of the coefficienég, (M = 50)

As a final comment, as the plots above (Figures 1-2) suggeandV are actuallynot root-mean-square (rms)
guantities, a connection that was made in [4, 5] for purpo$esodel validation. Indeed, as the original equations
(6) was not derived for rms quantities, there is no reasorsso@ate the solutions to this EVP with rms velocities
or require them to be non-negative. An appropriate intéatian of the solutions to (6) is currently lacking. Are
these solutions simply pointwise velocity fluctuations™®dkind of physical interpretation will be required both for
validation of the model/governing equations selected, fandiltimate calculation of the desired turbulent pressure
loads.



4 *“Pseudotemporal” Eigenvalue Problem (EVP) for the Fluctuations with
Orr-Sommerfeld-Like Ansatz

There is another way to handle the ill-posedness of the fiticty equations (6). As suggested in the introduction,
one can assume the fluctuating quantities are unstealdyx,y),V'(t,x,y), p'(t,x,y). In this case, the fluctuating
equations are actually (17), that is, they are (6) but witime tderivative appearing in the two momentum equations.
The unsteady BVP (17), although homogeneounpisll-posed, provided one specifies non-trivial initial catimhs
u'(0,%,Y) = up(x,y), V(0,%Y) = V5(X.Y), P'(0,XY) = pp(x,y). Rewriting (17) in terms of the fluctuating streamfunc-
tion /' (t,x,y) (14), one obtains in place of (19) the following unsteady PDE

(Why + Wt +V Wy +U W +U Py +V i, + Uy gy, — Uyt = 0 (42)

In what we will refer to as the “pseudotemporal” approachuse the unsteady terms in (42) to generate a well-posed
EVP using Orr-Sommerfeld theory. We call the appropsgudotemporal because in actuality, we are interested in the
steady fluctuations. Thus, time is added to (#2}the sake of well-posedness only, to be taken away once a non-trivial
solution is obtained, following the procedure outlinedhe tunning document [7], as well as below.

Given (42), the “pseudotemporal” approach says to intreduttime-dependent ansatz for the fluctuating streamfunc-
tion of the form

W'itxy) = Py e (43)
Substituting (43) into (42), we obtain:

U +aU Q" + (ea®U +Ux) ' + a(a?U —Uy) P+ A (" + a?P) = 0

#(0) = f(w) = §'(0) = () =0 (44)

wheres =V /U. (44) can be viewed, and solved numerically, as an eigeayaiblem, for the unknown eigenvalues
Ai and their corresponding eigenfunctiofts Unlike the EVP (25), the EVP (45) isnear in the eigenvalue, as in
(45) the eigenvalue comes from the “pseudo’-time deperelemat from the assumed behavior in thelirection.
This makes (44) quite amenable to numerical solution usisgextral method with basis functions defined on a
semi-infinite domain, e.g., a Laguerre-Galerkin methode diatails of the numerical solution of (44) by a Laguerre-
Galerkin spectral method is outlined in Section 4.1, wheeealgo give some numerical results for a simple choice of
the parameters.

In the “pseudotemporal” approach, once the eigenvaluegigethfunctions are computed, the solution (in actuality a
steady function) is set to be:

@' (xy) = spar{ $i(y) e (45)
(45) amounts to essentially settihg: const in (43). The parametar in (43) is to be specified priori (modeled), as
areU, Uyy andUyy.

We end by calling to the reader’s attention the fact that vidhvassentially done in the “pseudotemporal” approach
is a source is implicity introduced into the homogeneouadteequations (19). It is easiest to demonstrate this on a
simpler PDE. Suppose we wish to apply the “pseudotempopgdt@ach to the one-dimensional (1D) heat equation
onxe (0,1):

UXX - O
u(0) = u(1) = 0 (46)
Of course, the solution to (46) is trivial. The “pseudotemgitapproach says to add a derivative with respect to time
U+ Uxx =0
u(0) = u(1) = 0 (47)
and assume an ansatz of the farfm,t) = ((x)e*. Substituting this ansatz into (47) gives the EVP:
0’"+A0=0
G(0)=0a(1)=0 (48)

9



The solution to (48) is the span of Fourier sine functiom) = sparf{sin(n7x) : n € Z}. Substituting this into the
ansatz and setting= 0, following the “pseudotemporal” approach, we get as our-tiivial “pseudotemporally”
computed solution:

u(x) = sparf{sin(nnx) : ne Z} (49)

Note that (49) doesot solve the original PDE (46); rather it solves

u(0) = u(1) = 0 (50)
whereA, = nrrfor n€ Z. Thus, the “pseudotemporal” approach ensures well-pessdoy adding “artificial” unsteady
terms that essentially generate an artificial source footlggnal homogeneous PDE. This idea is quite novel; theesfo
its appropriateness and validity in the context of the ptg/giherent in our model is worth investigating further in
future research. In addition, it motivates Section 5, wlaeseurce is introduced directly into the fluctuating equetio

(6).

4.1 Laguerre-Galerkin Spectral Method Solution to the EVP(44)

Since (44) (and also (25), but here we focus our attentiortd)) (s posed on a semi-infinite domain, it is amenable
to numerical solution by a Laguerre-Galerkin spectral méth

Recall the Laguerre polynomials, defined by:

Lo(X) =1
Li(x)=1—x (51)
(n+1)Ln11(X) = (2n+1—x)Ln(X) —nLp-1(X), n=1,2,...

These functions satisfy Laguerre’s equatixid, + (1 — x)L;, + nL, = 0, with the boundary conditioh,(0) = 1. They
are orthogonal in the?(]0, %)) inner product with respect to the weigt*.

To solve (44) by a Galerkin method, we are required, by déimjtto have a basis that satisfies the boundary con-
ditions, in this case, a homogeneous BC{mand ' at 0 andw. It is clear that the Laguerre polynomials (51) do
not satisfy these boundary conditions. It takes some wodoine up with appropriate basis functions that satisfy the
required boundary condition (see as a reference [10]) ritstout that the following basi&ﬁ}iN:O does the trick:

@x)

[Li(X) — Liy1(x) + 2x]e™/? (52)

It is straight forward to check thag (0) = @ () = @’(0) = ¢@/(0) =0foralli =0,1,2,.... We will therefore expand
our streamfunctiony(y) in the basis (52), so that we will solve for the coefficiem{such that:

N-1
P(y) =~ Only) = ;an%(y) (53)

with the ¢, defined in (52).

Projecting (44) onto thé" basis functiory and performing some integrations by parts, we obtain tHeviimg weak
formulation of the EVP:

JoUy@ +Uq) (ed” + ad)dy— [5° (€a?U + Uyy) &' @dy — a f5°(a?U — Uyy) Paady
=A[a? [y Pady— [ &' g dy]

In matrix form, denoting the vector of unknowns & = ( a - an-1 ) € RN, (54) can be written as

(54)

Ka =AMa (55)

10



with the stiffness and mass matrix entries defined respagtiy:

o0

K0 = [ (W@ +UEd +ag)dy— [ (ea’U+Ug)dady-a [ (0% -Upady  (56)

0
M) =a? [ ady— [ dday 57)
The general solution procedure is as follows:
1. Specifya, €, U, Uy andUyy.
2. SeleciN, the number of basis functions you wish to use.
3. Compute the stiffness and mass matrices from (56) andy{g&i) the basis functions (52).
4. Solve the generalized discrete EVP (55), e.g., in MATLABh the commandl A, L] = eig(K, M.

5. Set as the steady, pseudo-temporally computed streatitfaisolution:

LIJI/\I (Xa y) = Spaq:l,...,N { A(Ia J)(a (y)} eaX (58)

4.2 Some Numerical Results t¢44) using the Laguerre-Galerkin Spectral Method

As a numerical experiment, to get some idea of what the swistio (44) may look like, let us fix:

U U b
£=001 a=-¢ nyz—%, TW:_VO’ Co=0001 by=1 (59)

The results are quite interesting. First, observe thatitgenealues seem to decay to zero (Figure 4). Although most
of the eigenvalues have a hon-zero imaginary part, the rmatgof the imaginary part is in general much smaller than

the magnitude of the real part. This may be grounds for omgjthe imaginary parts of the eigenfunctions in practical

applications.

Real and Imaginary parts of Eigenspectrum
T

O [Re(M)|
oo *_Iimol| |

1 ooo

00
00
00
° oo
. X x Do x 3% 2202900000 90e

0 5 10 15 20 25 30 35 40
i

Figure 4:|Re(A;)| and|Im(A;)| of eigenvalue solutions to (44)

Figure 5 shows plots of some of theandV' eigenfunction solutions to (44) along the cross sectien0.

One can see that, like the series solutions in Figures 1e2ethrenot non-negative, which in fact they need not be,
as they are not root-mean-square (rms) quantities in thergong equation (44). These plots suggest that perhaps the
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Fluctuating Velocity u at x = 0
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Figure 5: Laguerre-Galerkin method computed fluctuatingaity eigenfunctions corresponding to the first 5 eigen-

values

approach to take is to compute these eigenfunctions fonakigenvalues, and then average them. The interpretation
would be a velocity fluctuatiompt an rms velocity), however, unless we average in some wayrthkés the quantities

non-negative.

The procedure/implementation presented in this sectisnphampted several additional questions that will need to
be addressed. First, how do we wish to define the span in (58)%eéwish to average all the eigenfunctions, or
only use a select set of them? Moreover, what do we wish to tothve eigenfunctions that have non-zero imaginary
parts? Finally, as in the series solution approach of Se&ib, there remains the question of how one would go about

normalizing the final solution.
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5 Steady Inhomogeneous Boundary Value Problem (BVP) for th&luctua-
tions with Mean Flow Residual-Based Source

Given the discussion above of the “pseudotemporal” approaamely the fact that the approach handles the ill-
posedness of the original equations by implicitly introithgca source, making the equations inhomogeneous, the
natural question to ask is: is the “pseudotemporally”—gateel artificial source that comes from the eigenvalie

(43) the “right” source to use? It seems that perhaps onddleonsider introducing a source directly into the steady
fluctuating equations (6).

One idea to generate such a source is using the mean equ&lioAssuming the “standard” boundary simplifications
(U )x =~ (VV)y = (UV)x =~ VVy ~ 0, and the eddy viscosity modek(u'V')y = vesfUyy, as done in the introduction,
we obtain Eqns. (7) for the mean quantities. These are clogdde eddy-viscosity model, i.e., they can be solved
independently of the fluctuation equations (numericallpassibly analytically).

Since turbulence is inherently a non-linear phenomenoa, roay argue that the fluctuation equations need to be
non-linear. Let us see if we can come up with a set of “splitttllating equations given (2)—(4) and (7). Setting
(U )x =~ (VV)y ~ (UV)x ~ VVy = 0 in (2)—(4), these equations become:

[Ux+ W + (W4 - 0
[U Ux +VUy+ Px_ Vefoyy} + [U u;—i—Vu/ + U/Ux+\/Uy+ p;(‘f' Vefoyy+ (u/\/)y} == 0 (60)
UV +VVy +R) + fU\/X +VV, + UV +VVy + | = 0
Now, from (60), the “natural” set of (nonlinear!) set of etjoas for the fluctuations is:
w+v, = 0
Uu;-l—Vug,—i— U/Ux+\/Uy+ p;(‘i‘ (U/\/)y == _Vefoyy (61)
UV +VV +uVe+VVy+p, = 0

Note that (61) is simply an example of the sort of inhomogeisemn-linear fluctuating equations one can come up
with assuming a mean-flow-residual-based source. Thes#ieqs would be different if one did not wish to make
the boundary layer simplificationfs'u’)x ~ (VV)y = (UV)x =~ VVy = 0, for instance. One could also add an unsteady
term to (61), if desired.

Several things are noteworthy about the equations (61) aridnts of these equations. First, the equationsane
linear in the fluctuations, due to the presence of the Reynoldsssteesi(u'V')y in the x-momentum equation. This

is very promising, as turbulence is inherently non-lin@ad hence non-linear equations are more likely to capture
appropriately the physics of turbulent flow. Moreover, tigei@ions (61) arénhomogeneous, and so with homoge-
neous boundary conditions at= 0,0, will be well-posed. Thus, there is no reason to formulagedfuations as an
eigenvalue problem (EVP) for well-posedness. Similafiya believe our flow is steady, there is no need to introduce
an “artificial” source or “pseudo-time” term for well-poseseks, as done in Section 4.

Note that, in the equations (61), we have retained the iméljtappealing property of the “splitting” that [split mea
equationsH [split fluctuating equations} [original equations (2)—(4)]. Giveb andV, computed by solving (7)
with a model forves £, the equations (61) are closed, and can be solved numgridalimerical solution of (61) has
yet to be implemented. These equations can be discretizeg as.aguerre-Galerkin method like the one presented
in Section 4.1. Note, however, that a Newton step would nedsbtadded to handle the non-linearity that has been
introduced.

6 Conclusions, Remaining Issues, Future Considerations

In the present document, we have presented several vaohetgiations for the fluctuating velocities and pressure,
which we are interested in computing for the sake of calmdatrbulent pressure loads on a body. At the heart of the
equations is the mean/fluctuation “splitting”, first propdsn [4, 5]: following the decomposition of the relevantdiel
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into the sum of a mean and a fluctuation (1) and substitutiahiefsum into the governing equations (taken at the
present time to be incompressible 2D Euler equations), plits the fluctuating equations (6), normally lost to aver-
aging in RANS, from the mean equations (5) and solves theepaddently for the desired fluctuations. Given some
turbulence model to close the mean equations to yield, &)gofie may solve for the mean quantities independently
from the fluctuations, either numerically or perhaps anedjtty, and feed the computed mean quantities into (5), from
which the fluctuations can be obtained.

A crucial observation is that, as they stand, the equati6hsueill-posed: they are homogeneous equations with
homogeneous boundary conditions. Our task herein has bgeopose and analyze several approaches for making
the equations (6) well-posed. This can be done by:

e Assuming an Orr-Sommerfeld-like ansatz to derive a Sturmrlille eigenvalue problem for the equations (6)
(Section 3).

e Adding an unsteady term to the fluctuating equations, anaditate a “pseudotemporal” eigenvalue problem
for (42) (Section 4).

e Adding a source to the homogeneous equations (6), e.g.reesbased on some residual coming from the mean
equations (Section 5).

Preliminary numerical experiments have revealed theigfig:

e The solutions to the “artificial” eigenvalue problem (21}hwan ad hoc eigenvalue scaling facfarlike pro-
posed in [4, 5], are difficult to interpret physically. In paular, as the eigenvalue is not tied to a particular
solution form or ansatz, it is unclear how to make sense ofpdexreigenvalues and eigenfunctions. Alternate,
more naturally arising EVPs are sought therefore (SecBe#s.

e Regardless of the final boundary value or eigenvalue prolsielected, an amenable spatial discretization is
a Laguerre-Galerkin spectral basis (Section 4.1), as thB/BVP is posed on a semi-infinite domdh=
(0,0) x (0,00). We have derived in the present work a Galerkin basis combid weighted Laguerre poly-
nomials, namely (52), that satisfies the relevant boundangitions, and can be employed in the ultimate
implementation.

e Given that our domain is semi-infinite and the connectionttor8-Liouville theory/orthogonal polynomials
exhibited in Sections 2—4, it seems most appropriate tootrgohnect the streamfunction EVP to Laguerre’s
differential equation

(xeu) +ne*u=0 (62)

posed on a semi-infinite domajf, «) rather than Fourier's equation’(+ Au = 0), as was attempted in earlier
works [4, 5]. A direct connection between approximate atiedy solutions to the streamfunction EVP and
Laguerre’s equation (62) is exhibited in [7].

e If one is satisfied with solving the problem on a large finitenddn (O,L) x (O,L) for L >> 1, then a Her-
mite cubic finite element method, described in detail in [8h&lso be employed. Note that finite element
shape functions that are continuous and have continuousiérivatives are required to solve EVP/BVPs for
the streamfunction (e.g., (44)). In particulinear finite elements will be inadequate. This may have some
implications if the EVP is to be implemented in SIERRA, wharrently only supports linear finite elements.

e Since the operator governing the EVP will almost surely herasetric, there is no guarantee that the eigenval-
ues and corresponding eigenfunctions that solve the EMPevileal. It will need to be decided, therefore, how
to interpret the complex eigenvalue/eigenfunction sohaiin a physical context.

e Previously [4, 5], an association was made between theisohuio the fluctuating equations (6) and root-mean-
square (rms) quantities, based on the observation tha thero explicit temporal scale in these expressions.
Based on this connection, one way of validating the equatias to require that their solutions be non-negative:
u,v,p’ > 0. However, in fact, the equations (6) wemet derived for rms quantities; therefore there is no
reason for the solutions to (6), or EVP variants of (6) to beasearily non-negative. One therefore needs an
interpretation of what these fluctuations mean exactlyssio &ave a means of interpret as well as validate the
solutions to (6).
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e Given the point above, the eddy viscosity s in the mean equations (7) may need to be adjusted, to acamunt f
the fact that we are employing the modelu'V')y = Vet Uy, where the left-hand-side i®t the usual Reynolds
stress (i.e., it is not averaged).

e Since the equations (6) are homogeneous, any constanptaudfia computed solution to (6) will also solve
these equations. Some technique will need to be devisedrielsmv normalize (i.e., fix the magnitude of) the
solutions.

¢ |t may be worthwhile to impose boundary conditions on thetélating quantities in the streamwise direction,
i.e., atx =0 andx = .

Overall, significant progress has been made in identifyssgés involving the well-posedness, numerical solvahilit
and physical correctness of the fluctuating equations (&)ekid by enumerating several further extensions that it may
be desirable to consider in the future, as the model is autpdén take into account more complicated flow scenarios:

e Adding viscous terms to (5) and (6).
e Considering the compressible equations of fluid mechanm®pressible Euler or Navier-Stokes equations).

e Formulating non-linear variants of (6), such as what is pemgl in Section 5. (This seems crucial from a physics
perspective, as turbulence is inherently a non-linear phnemon.)

e Rather than employing the somewhat ad hoc “pseudotempapplbach (Section 4), making (6) well-posed by
adding some physically-relevant source to these equaf#gs as in Section 5).

e Performing all the analysis and formulating the problemha primitive variables/, v/ and p/, rather than
working with the streamfunctiogy’, as this latter approach is limited to two-dimensions (2D).
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